Metal–Organic Framework@Microporous Organic Network: Hydrophobic Adsorbents with a Crystalline Inner Porosity

Jiseul Chun,† Sungah Kang,† Nojin Park,† Eun Ji Park,† Xing Jin,† Kwang-Dae Kim,† Hyun Ook Seo,† Sang Moon Lee,† Hae Jin Kim,‡ Woo Hyun Kwon,§ Young-Kwon Park,§ Ji Man Kim,*† Young Dok Kim,*† and Seung Uk Son*†

†Department of Chemistry and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea
‡Korea Basic Science Institute, Daejeon 350-333, Korea
§Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Korea

Supporting Information

ABSTRACT: This work reports the synthesis and application of metal–organic framework (MOF)@microporous organic network (MON) hybrid materials. Coating a MOF, UiO-66-NH2, with MONs forms hybrid microporous materials with hydrophobic surfaces. The original UiO-66-NH2 shows good wettability in water. In comparison, the MOF@MON hybrid materials float on water and show excellent performance for adsorption of a model organic compound, toluene, in water. Chemical etching of the MOF results in the formation of hollow MON materials.

Microporous materials with pores <2 nm have been applied for diverse purposes such as gas capture, catalysis, and separation.1−12 Among the microporous materials, metal–organic frameworks (MOFs) assembled with various organic building blocks and metal ions show very large surface areas and chemical diversity.7 For example, UiO-66(Zr)-based MOFs have been prepared using dicarboxylic acids and zirconium ions.3 Their excellent stability3a,b,4 attracted the attention of scientists and widened the field for their possible applications. Recently, the adsorption properties of UiO-66(Zr)-based MOFs have been extensively studied.5 Beyond their well-defined crystalline pore structure, the introduction of additional polar groups in building blocks induces better adsorption performance toward small target molecules.6 However, competitive moisture adsorption can hamper the target adsorption under conventional conditions. The water affinity of UiO-66(Zr)-based MOFs is a critical parameter in their application as environmental adsorbents for organic pollutants on water (such as an oil spill in the sea). Thus, for efficient adsorption of organic adsorbates in water, chemical control of the surface properties of adsorbents must be achieved. In our test, UiO-66(Zr)-based MOFs such as UiO-66-I with I groups and UiO-66-NH2 with NH2 groups showed excellent stability and good wettability in water, as reported in the literature,7 possibly due to their polar Zr-carboxylate bonds. Notably, despite having lower densities than water, many MOFs, including the UiO-66 series, sink in water upon wetting. Similar to the synthesis of MOFs, microporous organic networks (MONs) have been recently prepared by assembling various organic building blocks with organic connectors via coupling reactions.8 MONs would be expected to have properties distinct from those of MOFs; the unique properties of MONs and MOFs can be judiciously combined by chemical hybridization of the two materials. In addition, the MOF in hybrid materials can be used as a template10 for the synthesis of hollow MONs. Although MOF@MOF core/shell hybrid materials were recently reported,11 as far as we are aware, there is no report on MOF@MON hybrid materials. Our research group has studied separately the functional MOFs12 and MONs.13 In this work, we report the synthesis of MON-coated UiO-66(Zr)-based MOFs and their chemical conversion to a hydrophobic surface for the adsorption of organic compounds floating on water.

Figure 1 shows a synthesis scheme for the MON-coated UiO-66-NH2.14 First, UiO-66-NH2 was prepared by the literature method.3,6 The MOF was coated by the MON via Sonogashira coupling of tetra(4-ethynylphenyl)methane with 1,4-diiodobenzene or 4,4′-diiodobiphenyl.

Received: January 13, 2014
Published: April 30, 2014

Figure 1. Synthesis of MOF@MON hybrid materials.
In conventional synthesis, white UiO-66-NH$_2$ powders were well dispersed in a mixture of toluene and triethylamine. Catalytic amounts of bis(triphenylphosphine)palladium dichloride and copper(I) iodide were added. The reaction mixture was stirred for 1 h. Tetra(4-ethylphenyl)methane and 2 equiv of diiodoarene were added. The reaction mixture was heated at 90 °C for 24 h. The pale yellow solid materials were retrieved by centrifugation, washed with methanol, acetone, and methylene chloride, and then dried under vacuum. To control the MON thickness on UiO-66-NH$_2$, the amount of tetra(4-ethylphenyl)methane used was gradually increased from 10 to 20 to 30 mg with 2 equiv of 1,4-diiodobenzene and a fixed amount (100 mg) of UiO-66-NH$_2$; the resultant materials are denoted as MOF@MON-1, MOF@MON-2, and MOF@MON-3, respectively. Instead of 1,4-diiodobenzene, 4,4'-diiodobiphenyl was used for pore structure variation, forming MOF@MON-4 (Figure 1; see Supporting Information (SI) for details). The obtained MOF@MON materials were investigated by scanning and transmission electron microscopy (SEM and TEM, Figure 2).

As can be seen in Figure 2d, SEM of pristine UiO-66-NH$_2$ showed angulated particles with an average size of 200 nm and a smooth surface. As the amount of organic building blocks increased, the surface of MOF@MON became gradually rougher (Figure 2a–c). The outer shape of MOF@MON-4 was similar to that of MOF@MON-1 (Figure 2a,e). TEM analysis of MOF@MON-4 revealed that the surface of the MOF is coated with ultrathin (~9 nm thickness) MON materials (Figure 2f). The MON coating in the TEM images can be distinguished by a lighter contrast than that of the inner MOF. The coating thickness of MONs in MOF@MONs was 8–30 nm.

It was reported that the UiO-66(Zr)-based MOF can be disassembled in HF solution. A homogeneous coating of MON on UiO-66-NH$_2$ was confirmed by chemical etching of UiO-66-NH$_2$ (Figure 2g). Pale yellow powders, H-MON-1, H-MON-2, H-MON-3, and H-MON-4, were obtained by chemical etching of the MOFs in MOF@MON-1–4, respectively. The resultant materials were investigated by TEM (Figure 2h–m). As shown in Figure 2h–j, hollow structures were clearly observed. The size and shape of the inner hollow space matched well with those of the original UiO-66-NH$_2$ (Figure 2k,l). As expected, the shell thickness of MON gradually increased from H-MON-1 (8 nm) to H-MON-2 (15 nm) to H-MON-3 (25 nm). The shell thickness of H-MON-4 (9 nm) was similar to that of H-MON-1 (Figure 2h,i).

To study any change that may have occurred in the inner crystalline MOF structure, powder X-ray diffraction (PXRD) studies were conducted on the MOF@MON hybrid materials. As reported in the literature for the MON materials prepared by Sonogashira coupling, the H-MONs showed an amorphous character (Figure S1a in the SI). The inner crystalline structure of the MOF in the MOF@MON materials was completely retained after MON coating (Figure S1a). Thermogravimetric analysis showed that MOF@MONs and H-MONs are stable up to ~230 and ~250 °C, respectively (Figure S1e).

The solid-phase 13C NMR spectroscopy on the MOF@MON-1 showed new peaks at 65 (benzyl carbon), 90 (internal alkynes), 131, and 145 ppm (aromatic parts) due to the MON shells, in addition to those at 171 (carbonyl), 123, and 138 ppm (aromatic parts) from the MOF, supporting the hybrid chemical components (Figure S1b). As expected, the relative intensity of 13C peaks from the MON (red asterisks in Figure S1b) compared with those from the inner MOF (blue asterisks in Figure S1b) increased gradually from MOF@MON-1 to MOF@MON-2 to MOF@MON-3. The 13C NMR spectrum of MOF@MON-4 showed a new peak at 125 ppm, compared with that of MOF@MON-1, indicating that the diphenyl moieties were successfully introduced into MOF@MON-4. Elemental analysis showed that the nitrogen content gradually decreased from UiO-66-NH$_2$ (2.86 mmol/g) to MOF@MON-1 (2.41 mmol/g), MOF@MON-2 (2.18 mmol/g), and MOF@MON-3 (2.09 mmol/g). The nitrogen content of MOF@MON-4 (2.46 mmol/g) was similar to that of MOF@MON-1 (Table S1).

The N$_2$ sorption isotherms were analyzed by Brunauer–Emmett–Teller method, and the surface areas of MOF@MON-1–4 were measured as 795, 711, 703, and 809 m2/g, respectively (Figure S1c). As the MON component increased, the surface area slightly decreased. UiO-66-NH$_2$ in this study showed a 1070 m2/g surface area, similar to that reported in the literature. The MONs prepared by Sonogashira coupling had surface areas of ~510–1600 m2/g in the literature. The surface areas of H-MON-1 and H-MON-4 were measured as 1138 and 866 m2/g,
respectively (Table S1). Considering these results, the reduced surface areas of MOF@MONs, compared with those of the original MOF and MON shells, can be attributed to the inclusion of MONs in the pores of the MOF. Density functional theory (DFT) study of the pore size distributions of MOF@MON-1 – 3 showed the major pore sizes to be 0.7 and 1.3 nm, between those of UiO-66-NH$_2$ and H-MON-1 (Figure S1d). The nanopore distribution of H-MON-4 shifted slightly more to a larger value than that of H-MON-1, implying easier accessibility of guest molecules in MOF@MON-4 than MOF@MON-1 (Figure S2).

Chemical changes of the surface properties of MOF@MONs, compared with the original MOF, were studied by water contact angle measurement using pellets of each material. UiO-66-NH$_2$ showed complete water wetting (Figure 3a). The water drop was smoothly adsorbed into MOF. As shown in Figure 3b – d, the water contact angles gradually increased from 121° (MOF@MON-1) to 139° (MOF@MON-2) to 145° (MOF@MON-3), depending on the thickness of the MON on the MOF. MOF@MON-4 showed a 124° contact angle (Figure 3e). The MOF@MONs float on water even after vigorous shaking or standing for a week.18 (Figure S3) In comparison, UiO-66-NH$_2$ showed a 124° water contact angle (Figure 3f). The MOF@MON-4 adsorbed guest molecules more efficiently than MOF@MON-1 and UiO-66-NH$_2$, implying easier accessibility of guest molecules in MOF@MON-4 than MOF@MON-1 (Figure S2).

For control tests, UiO-66-NH$_2$ gradually adsorbed toluene into UiO-66-NH$_2$ (Figure S4). In comparison, UiO-66-NH$_2$ showed a 124° contact angle (Figure 3e). The MOF@MONs float on water even after vigorous shaking or standing for a week.18 (Figure S3) In comparison, UiO-66-NH$_2$ showed a 124° water contact angle (Figure 3f). The MOF@MON-4 adsorbed guest molecules more efficiently than MOF@MON-1 and UiO-66-NH$_2$, implying easier accessibility of guest molecules in MOF@MON-4 than MOF@MON-1 (Figure S2).

Chemical changes of the surface properties of MOF@MONs, compared with the original MOF, were studied by water contact angle measurement using pellets of each material. UiO-66-NH$_2$ showed complete water wetting (Figure 3a). The water drop was smoothly adsorbed into MOF. As shown in Figure 3b – d, the water contact angles gradually increased from 121° (MOF@MON-1) to 139° (MOF@MON-2) to 145° (MOF@MON-3), depending on the thickness of the MON on the MOF. MOF@MON-4 showed a 124° contact angle (Figure 3e). The MOF@MONs float on water even after vigorous shaking or standing for a week.18 (Figure S3) In comparison, UiO-66-NH$_2$ showed a 124° water contact angle (Figure 3f). The MOF@MON-4 adsorbed guest molecules more efficiently than MOF@MON-1 and UiO-66-NH$_2$, implying easier accessibility of guest molecules in MOF@MON-4 than MOF@MON-1 (Figure S2).

For control tests, UiO-66-NH$_2$ gradually adsorbed toluene into UiO-66-NH$_2$ (Figure S4). In comparison, UiO-66-NH$_2$ showed a 124° contact angle (Figure 3e). The MOF@MONs float on water even after vigorous shaking or standing for a week.18 (Figure S3) In comparison, UiO-66-NH$_2$ showed a 124° water contact angle (Figure 3f). The MOF@MON-4 adsorbed guest molecules more efficiently than MOF@MON-1 and UiO-66-NH$_2$, implying easier accessibility of guest molecules in MOF@MON-4 than MOF@MON-1 (Figure S2).

Chemical changes of the surface properties of MOF@MONs, compared with the original MOF, were studied by water contact angle measurement using pellets of each material. UiO-66-NH$_2$ showed complete water wetting (Figure 3a). The water drop was smoothly adsorbed into MOF. As shown in Figure 3b – d, the water contact angles gradually increased from 121° (MOF@MON-1) to 139° (MOF@MON-2) to 145° (MOF@MON-3), depending on the thickness of the MON on the MOF. MOF@MON-4 showed a 124° contact angle (Figure 3e). The MOF@MONs float on water even after vigorous shaking or standing for a week.18 (Figure S3) In comparison, UiO-66-NH$_2$ showed a 124° water contact angle (Figure 3f). The MOF@MON-4 adsorbed guest molecules more efficiently than MOF@MON-1 and UiO-66-NH$_2$, implying easier accessibility of guest molecules in MOF@MON-4 than MOF@MON-1 (Figure S2).

For control tests, UiO-66-NH$_2$ gradually adsorbed toluene into UiO-66-NH$_2$ (Figure S4). In comparison, UiO-66-NH$_2$ showed a 124° contact angle (Figure 3e). The MOF@MONs float on water even after vigorous shaking or standing for a week.18 (Figure S3) In comparison, UiO-66-NH$_2$ showed a 124° water contact angle (Figure 3f). The MOF@MON-4 adsorbed guest molecules more efficiently than MOF@MON-1 and UiO-66-NH$_2$, implying easier accessibility of guest molecules in MOF@MON-4 than MOF@MON-1 (Figure S2).

Chemical changes of the surface properties of MOF@MONs, compared with the original MOF, were studied by water contact angle measurement using pellets of each material. UiO-66-NH$_2$ showed complete water wetting (Figure 3a). The water drop was smoothly adsorbed into MOF. As shown in Figure 3b – d, the water contact angles gradually increased from 121° (MOF@MON-1) to 139° (MOF@MON-2) to 145° (MOF@MON-3), depending on the thickness of the MON on the MOF. MOF@MON-4 showed a 124° contact angle (Figure 3e). The MOF@MONs float on water even after vigorous shaking or standing for a week.18 (Figure S3) In comparison, UiO-66-NH$_2$ showed a 124° water contact angle (Figure 3f). The MOF@MON-4 adsorbed guest molecules more efficiently than MOF@MON-1 and UiO-66-NH$_2$, implying easier accessibility of guest molecules in MOF@MON-4 than MOF@MON-1 (Figure S2).

For control tests, UiO-66-NH$_2$ gradually adsorbed toluene into UiO-66-NH$_2$ (Figure S4). In comparison, UiO-66-NH$_2$ showed a 124° contact angle (Figure 3e). The MOF@MONs float on water even after vigorous shaking or standing for a week.18 (Figure S3) In comparison, UiO-66-NH$_2$ showed a 124° water contact angle (Figure 3f). The MOF@MON-4 adsorbed guest molecules more efficiently than MOF@MON-1 and UiO-66-NH$_2$, implying easier accessibility of guest molecules in MOF@MON-4 than MOF@MON-1 (Figure S2).

Chemical changes of the surface properties of MOF@MONs, compared with the original MOF, were studied by water contact angle measurement using pellets of each material. UiO-66-NH$_2$ showed complete water wetting (Figure 3a). The water drop was smoothly adsorbed into MOF. As shown in Figure 3b – d, the water contact angles gradually increased from 121° (MOF@MON-1) to 139° (MOF@MON-2) to 145° (MOF@MON-3), depending on the thickness of the MON on the MOF. MOF@MON-4 showed a 124° contact angle (Figure 3e). The MOF@MONs float on water even after vigorous shaking or standing for a week.18 (Figure S3) In comparison, UiO-66-NH$_2$ showed a 124° water contact angle (Figure 3f). The MOF@MON-4 adsorbed guest molecules more efficiently than MOF@MON-1 and UiO-66-NH$_2$, implying easier accessibility of guest molecules in MOF@MON-4 than MOF@MON-1 (Figure S2).
Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This work was supported by grant NRF-2012-R1A2A201045064 (Midcareer Researcher Program) through NRF of Korea. S.U.S. acknowledges grant NRF-2009-0094023 from the Ministry of Education (Basic Science Research Program). S.K. acknowledges funds from the Agency for Defense Development through Chemical and Biological Defense Research Center.

REFERENCES

