Supporting Information for

“Two-Dimensional Icy Water Clusters Between a Pair of Graphene-Like Molecules or Graphene Sheets”

Seong Kyu Kim,1,* Wenzhou Chen,2 Saeed Pourasad,2 and Kwang S. Kim2,*

1Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
2Center for Superfunctional Materials, Department of Chemistry, Ulsan Institute of Science and Technology (UNIST), Ulsan 44919, Korea

*Corresponding authors: skkim@skku.edu, kimks@unist.ac.kr

Contents:

1. Geometry and Energy of (H₂O)₁₋₂ as the inter-layer separation of coronene pair is varied.
2. Geometry and Energy of (H₂O)₃₋₅ as the inter-layer separation of coronene pair is varied.
3. Geometry and Energy of (H₂O)₆ as the inter-layer separation of coronene pair is varied.
4. Many body Interaction of (H₂O)₂₋₄ clusters extracted from substrates of this study
1. Geometry and Energy of \((\text{H}_2\text{O})_{1,2}\) as the inter-layer separation of coronene pair is varied.

1-1. Cor/(\text{H}_2\text{O})_1/Cor
1-2. Cor/(\text{H}_2\text{O})_2/Cor (Starting from dHdd conformer)
1-3. Cor/(\text{H}_2\text{O})_2/Cor (Starting from uHdd conformer)

Calculation method: SCC-DFTB-3D

Interaction energy of water clusters is defined as;

\[
\begin{align*}
E_1 &= E_{\text{total}} - 2 \times E_{\text{sub}} - n \times E_{\text{water}} \\
E_2 &= E_1 - E_{\text{sub-sub}}
\end{align*}
\]

where \(E_{\text{total}}\), \(E_{\text{sub}}\), \(E_{\text{water}}\), \(E_{\text{sub-sub}}\) are the total energy of cluster, energy of a single water, energy of the substrate, and energy of the substrate pair, respectively
1-1. Cor/(H$_2$O)/Cor

At $(d_x, d_y, d_z) = (0,0,15)$ Å

$E_1 = -2.82$ kcal/mol

$E_2 = -2.83$ kcal/mol

Figure S1. Interaction energy as a function of the Cor-Cor distance (d_z) for (H$_2$O)$_1$ between a pair of sandwiched Cors (left) and geometry at $(d_x,d_y,d_z) = (0,0,15)$ Å (right).
At $(d_x, d_y, d_z) = (0, 0, 5.9) \text{ Å}$

$E_1 = -5.53 \text{ kcal/mol}$

$E_2 = -3.76 \text{ kcal/mol (minimum)}$

Figure S2. Interaction energy as a function of the Cor-Cor distance (d_z) for $(\text{H}_2\text{O})_1$ between a pair of sandwiched Cors (left) and geometry at $(d_x, d_y, d_z) = (0, 0, 5.9) \text{ Å}$ (right).
Figure S3. Interaction energy as a function of the Cor-Cor distance (d_z) for (H$_2$O)$_1$ between a pair of sandwichedCors (left) and geometry at (d_x, d_y, d_z) = (0,0,5.0) Å (right).
1-2. Cor/(H₂O)₂/Cor (Starting from dHdd conformer)

At \((d_x, d_y, d_z) = (0,0,15) \text{ Å}\)

\[
\begin{align*}
E_1 &= -9.65 \text{ kcal/mol} \\
E_2 &= -9.66 \text{ kcal/mol}
\end{align*}
\]

Figure S4. Interaction energy as a function of the Cor-Cor distance \((d_z)\) for \((\text{H}_2\text{O})_2\) (starting from dHdd conformer) between a pair of sandwiched Cors (left) and geometry at \((d_x, d_y, d_z) = (0,0,15) \text{ Å}\) (right).
Figure S5. Interaction energy as a function of the Cor-Cor distance (d_z) for (H$_2$O)$_2$ (starting from dHdd conformer) between a pair of sandwichedCors (left) and geometry at (d_x,d_y,d_z) = (0,0,7.5) Å (right).
At \((d_x, d_y, d_z) = (0,0,6.2) \) Å

\[
E_1 = -13.9 \text{ kcal/mol} \\
E_2 = -12.6 \text{ kcal/mol (minimum)}
\]

Figure S6. Interaction energy as a function of the Cor-Cor distance \((d_z) \) for \((\text{H}_2\text{O})_2\) (starting from dHdd conformer) between a pair of sandwiched Cors (left) and geometry at \((d_x,d_y,d_z) = (0,0,6.2) \) Å (right).
At \((d_x, d_y, d_z) = (0,0,5.6) \text{ Å}\)

\[E_1 = -14.7 \text{ kcal/mol (minimum)} \]
\[E_2 = -12.4 \text{ kcal/mol} \]

Figure S7. Interaction energy as a function of the Cor-Cor distance \(d_z\) for \((\text{H}_2\text{O})_2\) (starting from dHdd conformer) between a pair of sandwiched Cors (left) and geometry at \((d_x, d_y, d_z) = (0,0,5.6) \text{ Å}\) (right).
1-3. Cor/(H₂O)₂/Cor (Starting from uHdd conformer)

At \((d_x, d_y, d_z) = (0,0,15) \, \text{Å}\)

\(E_1 = -9.27 \, \text{kcal/mol}\)
\(E_2 = -9.28 \, \text{kcal/mol}\)

Figure S8. Interaction energy as a function of the Cor-Cor distance \(d_z\) for \((\text{H}_2\text{O})_2\) (starting from uHdd conformer) between a pair of sandwiched Cors (left) and geometry at \((d_x, d_y, d_z) = (0,0,15) \, \text{Å}\) (right).
Figure S9. Interaction energy as a function of the Cor-Cor distance \((d_z)\) for \((\text{H}_2\text{O})_2\) (starting from uHdd conformer) between a pair of sandwiched Cors (left) and geometry at \((d_x,d_y,d_z) = (0,0,8.0)\) Å (right).
Figure S10. Interaction energy as a function of the Cor-Cor distance (d_z) for (H$_2$O)$_2$ (starting from uHdd conformer) between a pair of sandwiched Cors (left) and geometry at (d_x,d_y,d_z) = (0,0,6.3) Å (right).

At (d_x,d_y,d_z) = (0,0,6.3) Å

$E_1 = -13.8$ kcal/mol

$E_2 = -12.6$ kcal/mol (minimum)
At \((d_x,d_y,d_z) = (0,0,5.6)\,\text{Å}\)

\[E_1 = -14.7\,\text{kcal/mol (minimum)}\]

\[E_2 = -12.4\,\text{kcal/mol}\]

Figure S11. Interaction energy as a function of the Cor-Cor distance \((d_z)\) for \((\text{H}_2\text{O})_2\) (starting from uHdd conformer) between a pair of sandwiched Cors (left) and geometry at \((d_x,d_y,d_z) = (0,0,5.6)\,\text{Å}\) (right).
At \((d_x, d_y, d_z) = (0, 0, 5.6) \text{ Å}\)
\[E_1 = -14.7 \text{ kcal/mol}\]

At \((d_x, d_y, d_z) = (-0.4, -0.3, 5.6) \text{ Å}\)
\[E_1 = -14.9 \text{ kcal/mol}\]

Figure S12. Geometry change of \((\text{H}_2\text{O})_2\) as one Cor plane is laterally displaced from the other.
2. Geometry and Energy of \((\text{H}_2\text{O})_{3.5}\) as the inter-layer separation of coronene pair is varied.

2-1. Cor/(\text{H}_2\text{O})_3/Cor
2-2. Cor/(\text{H}_2\text{O})_4/Cor (Starting from dHdd conformer)
2-3. Cor/(\text{H}_2\text{O})_5/Cor (Starting from uHdd conformer)

Calculation method: SCC-DFTB-3D

In order to assess the ring structure, the following parameters are calculated.

\[<z> = \frac{1}{n} \sum_{i=1}^{n} z_{Oi} \] : Mean distance of oxygen atoms \((z_{Oi})\) of water cluster ring from the bottom substrate.

\[\sigma_z = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (z_{Oi} - <z>)^2} \] : Deviation of \(z_{Oi}\) from the mean value \(<z>\). This parameter indicates the flatness of the water cluster ring.

\[\text{FF} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [(x_{Oi} - X_i)^2 + (y_{Oi} - Y_i)^2]} \] : Geometry fit factor, where \((x_{Oi}, y_{Oi})\) is the coordinate of \(i\)-th oxygen in the water cluster ring and \((X_i, Y_i)\) is that in an ideal ring geometry, i.e. equilateral triangle for \(n = 3\), square for \(n = 4\), regular pentagon for \(n = 5\), regular hexagon for \(n = 6\).
2-1. **Cor/(H$_2$O)$_3$/Cor**

At $(d_x,d_y,d_z)=(0,0,15)$ Å

$E_1 = -14.7$ kcal/mol, $E_2 = -12.4$ kcal/mol

$<z>=3.07$ Å, $\sigma_z=0.01$ Å, FF=0.002 Å

Figure S13. Interaction energy (E_1) and geometry parameters ($<z>$, σ_z, FF) as a function of the Cor-Cor distance (d_z) for (H$_2$O)$_3$ between a pair of sandwichedCors (left) and the geometry at $(d_x,d_y,d_z)=(0,0,15)$ Å (right).
At \((d_x,d_y,d_z)=(0,0,8.0)\) Å

\[E_1 = -23.8 \text{ kcal/mol}, \quad E_2 = -23.5 \text{ kcal/mol} \]

\(<z>=3.71 \text{ Å}, \quad \sigma_z=0.73 \text{ Å}, \quad \text{FF}=0.20 \text{ Å} \)

Figure S14. Interaction energy \((E_1)\) and geometry parameters \((<z>, \sigma_z, \text{FF})\) as a function of the Cor-Cor distance \((d_z)\) for \((\text{H}_2\text{O})_3\) between a pair of sandwiched Cors (left) and the geometry at \((d_x,d_y,d_z)=(0,0,8.0)\) Å (right).
At \((d_x, d_y, d_z) = (0,0,6.3) \text{ Å}\)

\[E_1 = -27.1 \text{ kcal/mol}, \ E_2 = -25.9 \text{ kcal/mol}\]

\(<z> = 3.13 \text{ Å}, \ \sigma_z = 0.04 \text{ Å}, \ \text{FF}=0.001 \text{ Å}\)

Figure S15. Interaction energy \((E_1)\) and geometry parameters \(<z>, \ \sigma_z, \ \text{FF}\) as a function of the Cor-Cor distance \(d_z\) for \((\text{H}_2\text{O})_3\) between a pair of sandwiched Cors (left) and the geometry at \((d_x, d_y, d_z) = (0,0,6.3) \text{ Å}\) (right).
At \((d_x, d_y, d_z) = (0,0,6.1)\) Å

E_1 = -27.3 kcal/mol, E_2 = -25.8 kcal/mol

\(<z> = 3.04\) Å, \(\sigma_z = 0.03\) Å, FF=0.002 Å

Figure S16. Interaction energy (\(E_1\)) and geometry parameters (\(<z>, \sigma_z, FF\)) as a function of the Cor-Cor distance \((d_z)\) for \((H_2O)_3\) between a pair of sandwiched Cors (left) and the geometry at \((d_x, d_y, d_z) = (0,0,6.1)\) Å (right).
Figure S17. Geometry change of (H$_2$O)$_3$ as one Cor plane is laterally displaced from the other.
2-2. Cor/(H₂O)₄/Cor

At \((d_x, d_y, d_z) = (0,0,15) \text{ Å}\)

\[E_1 = -34.2 \text{ kcal/mol}, \quad E_2 = -34.2 \text{ kcal/mol} \]

\(<z>=3.18 \text{ Å}, \quad \sigma_z=0.07 \text{ Å}, \quad \text{FF}=0.04 \text{ Å}\)

Figure S18. Interaction energy \((E_i)\) and geometry parameters \(<z>, \sigma_z, \text{FF}\) as a function of the Cor-Cor distance \(d_z\) for \((H₂O)_4\) between a pair of sandwiched Cors (left) and the geometry at \((d_x,d_y,d_z) = (0,0,15) \text{ Å}\) (right).
At \((d_x, d_y, d_z) = (0,0,8.5) \text{ Å}\)

\[E_1 = -35.5 \text{ kcal/mol}, \quad E_2 = -35.2 \text{ kcal/mol} \]

\(<z> = 3.38 \text{ Å}, \quad \sigma_z = 0.23 \text{ Å}, \quad \text{FF} = 0.01 \text{ Å} \]

Figure S19. Interaction energy (\(E_1\)) and geometry parameters (\(<z>, \sigma_z, \text{FF}\)) as a function of the Cor-Cor distance \((d_z)\) for \((\text{H}_2\text{O})_4\) between a pair of sandwichedCors (left) and the geometry at \((d_x, d_y, d_z) = (0,0,8.5) \text{ Å}\) (right).
Figure S20. Interaction energy (E_1) and geometry parameters ($\langle z \rangle$, σ_z, FF) as a function of the Cor-Cor distance (d_z) for (H$_2$O)$_4$ between a pair of sandwiched Cors (left) and the geometry at (d_x, d_y, d_z) = (0,0,7.0) Å (right).
At \((d_x,d_y,d_z)=(0,0,6.2)\) Å

\[E_1 = -41.8 \text{ kcal/mol, } E_2 = -40.4 \text{ kcal/mol} \]

\(<z>=3.14 \text{ Å, } \sigma_z=0.05 \text{ Å, FF}=0.01 \text{ Å}\)

Figure S21. Interaction energy \((E_1)\) and geometry parameters \((<z>, \sigma_z, \text{ FF})\) as a function of the Cor-Cor distance \((d_z)\) for \((H_2O)_4\) between a pair of sandwiched Cors (left) and the geometry at \((d_x,d_y,d_z)=(0,0,6.2)\) Å (right).
Figure S22. Geometry change of $(\text{H}_2\text{O})_4$ as one Cor plane is laterally displaced from the other.
2-3. Cor/(H$_2$O)$_5$/Cor

At $(d_x,d_y,d_z) = (0,0,15)$ Å

$E_1 = -44.9$ kcal/mol, $E_2 = -44.9$ kcal/mol

$<z> = 3.18$ Å, $\sigma_z = 0.16$ Å, FF=0.04 Å

Figure S23. Interaction energy (E_1) and geometry parameters ($<z>$, σ_z, FF) as a function of the Cor-Cor distance (d_z) for (H$_2$O)$_5$ between a pair of sandwiched Cors (left) and the geometry at $(d_x,d_y,d_z) = (0,0,15)$ Å (right).
At \((d_x, d_y, d_z) = (0,0,8.0)\) Å

\[
\begin{align*}
E_1 &= -48.0 \text{ kcal/mol}, \quad E_2 = -47.7 \text{ kcal/mol} \\
\langle z \rangle &= 3.61 \text{ Å}, \quad \sigma_z = 0.55 \text{ Å}, \quad \text{FF} = 0.11 \text{ Å}
\end{align*}
\]

Figure S24. Interaction energy \((E_1)\) and geometry parameters \((\langle z \rangle, \sigma_z, \text{FF})\) as a function of the Cor-Cor distance \((d_z)\) for \((H_2O)_5\) between a pair of sandwiched Cors (left) and the geometry at \((d_x, d_y, d_z) = (0,0,8.0)\) Å (right).
At \((d_x, d_y, d_z) = (0,0,6.3)\) Å

\[E_1 = -53.3\text{ kcal/mol}, \quad E_2 = -52.1\text{ kcal/mol} \]

\[\langle z \rangle = 3.14\text{ Å}, \quad \sigma_z = 0.11\text{ Å}, \quad \text{FF} = 0.02\text{ Å} \]

Figure S25. Interaction energy (\(E_1\)) and geometry parameters (\(\langle z \rangle, \sigma_z, \text{FF}\)) as a function of the Cor-Cor distance \((d_z)\) for \((\text{H}_2\text{O})_5\) between a pair of sandwiched Cors (left) and the geometry at \((d_x,d_y,d_z) = (0,0,6.3)\) Å (right).
At \((d_x, d_y, d_z) = (0,0,6.3) \text{ Å}\)
\[E_1 = -41.8 \text{ kcal/mol} \]

At \((d_x, d_y, d_z) = (-0.4,-0.5,6.3) \text{ Å}\)
\[E_1 = -42.0 \text{ kcal/mol} \]

Figure S26. Geometry change of \((\text{H}_2\text{O})_5\) as one Cor plane is laterally displaced from the other.
3. Geometry and Energy of (H₂O)₆ as the inter-layer separation of coronene pair is varied.

3-1. Cor/(H₂O)₆ (ring)/Cor
3-2. Cor/(H₂O)₆ (book)/Cor
3-3. Cor/(H₂O)₆ (bag)/Cor
3-4. Cor/(H₂O)₆ (cage)/Cor
3-5. Cor/(H₂O)₆ (prism)/Cor

Calculation method: SCC-DFTB-3D
3-1. Cor/(H$_2$O)$_6$(ring)/Cor

At $(d_x, d_y, d_z) = (0,0,15)$ Å

$E_1 = -54.2$ kcal/mol, $E_2 = -54.2$ kcal/mol

$\langle z \rangle = 3.28$ Å, $\sigma_z = 0.22$ Å, FF = 0.02 Å

Figure S27. Interaction energy (E_1) and geometry parameters ($\langle z \rangle$, σ_z, FF) as a function of the Cor-Cor distance (d_z) for (H$_2$O)$_6$ (ring) between a pair of sandwiched Cors (left) and the geometry at $(d_x, d_y, d_z) = (0,0,15)$ Å (right).
At \((d_x,d_y,d_z) = (0,0,8.0) \text{ Å} \)

\[E_1 = -57.9 \text{ kcal/mol}, \ E_2 = -57.6 \text{ kcal/mol} \]

\(<z>=3.56 \text{ Å}, \ \sigma_z=0.42 \text{ Å}, \ FF=0.03 \text{ Å} \)

Figure S28. Interaction energy (\(E_1 \)) and geometry parameters \(<z>, \ \sigma_z, \ FF \) as a function of the Cor-Cor distance \((d_z) \) for \((\text{H}_2\text{O})_6 \text{ (ring)} \) between a pair of sandwiched Cors (left) and the geometry at \((d_x,d_y,d_z) = (0,0,8.0) \text{ Å} \) (right).
At \((d_x,d_y,d_z) = (0,0,6.5)\) Å

\[E_1 = -64.5 \text{ kcal/mol}, \ E_2 = -63.4 \text{ kcal/mol} \]

\(<z> = 3.25 \text{ Å}, \ \sigma_z = 0.20 \text{ Å}, \ FF = 0.006 \text{ Å} \]

Figure S29. Interaction energy \(E_1\) and geometry parameters \(<z>, \ \sigma_z, \ FF\) as a function of the Cor-Cor distance \(d_z\) for \((H_2O)_6\) (ring) between a pair of sandwiched Cors (left) and the geometry at \((d_x,d_y,d_z) = (0,0,6.5)\) Å (right).
3-2. Cor/(H₂O)$_6$ (book)/Cor

At $(d_x,d_y,d_z) = (0,0,15)$ Å

$E_1 = -55.2$ kcal/mol,
$E_2 = -55.2$ kcal/mol

Figure S30. Interaction energy (E_1) as a function of the Cor-Cor distance (d_z) for (H₂O)$_6$ (book) between a pair of sandwiched Cors (left) and the geometry at $(d_x,d_y,d_z) = (0,0,15)$ Å (right).
At \((d_x, d_y, d_z) = (0, 0, 8.0) \text{ Å}\)

\[E_1 = -59.7 \text{ kcal/mol},\]
\[E_2 = -59.4 \text{ kcal/mol}\]

Figure S31. Interaction energy \((E_1)\) as a function of the Cor-Cor distance \((d_z)\) for \((\text{H}_2\text{O})_6\) (book) between a pair of sandwiched Cors (left) and the geometry at \((d_x, d_y, d_z) = (0, 0, 8.0) \text{ Å}\) (right).
At \((d_{x}, d_{y}, d_{z}) = (0,0,6.5) \text{ Å}\)

\[E_{1} = -64.8 \text{ kcal/mol}, \]
\[E_{2} = -53.7 \text{ kcal/mol} \]

Figure S32. Interaction energy \(E_{1}\) as a function of the Cor-Cor distance \(d_{z}\) for \((\text{H}_2\text{O})_6\) (book) between a pair of sandwiched Cors (left) and the geometry at \((d_{x}, d_{y}, d_{z}) = (0,0,6.5) \text{ Å}\) (right).
3-3. Cor/(H$_2$O)$_6$ (bag)/Cor

At (d_x, d_y, d_z) = (0,0,15) Å

$E_1 = -53.3$ kcal/mol,
$E_2 = -53.3$ kcal/mol

Figure S33. Interaction energy (E_1) as a function of the Cor-Cor distance (d_z) for (H$_2$O)$_6$ (bag) between a pair of sandwiched Cors (left) and the geometry at (d_x, d_y, d_z) = (0,0,15) Å (right).
At \((d_x,d_y,d_z) = (0,0,8.5) \text{ Å}\)

\[E_1 = -57.9 \text{ kcal/mol},\]
\[E_2 = -57.7 \text{ kcal/mol}\]

Figure S34. Interaction energy \((E_1)\) as a function of the Cor-Cor distance \((d_z)\) for \((\text{H}_2\text{O})_6\) (bag) between a pair of sandwiched Cors (left) and the geometry at \((d_x,d_y,d_z) = (0,0,8.5) \text{ Å}\) (right).
At \((d_x,d_y,d_z)=(0,0,7.5) \text{ Å}\)

\[E_1 = -53.8 \text{ kcal/mol}, \]
\[E_2 = -53.3 \text{ kcal/mol}\]

Figure S35. Interaction energy \((E_1)\) as a function of the Cor-Cor distance \((d_z)\) for \((\text{H}_2\text{O})_6\) (bag) between a pair of sandwiched Cors (left) and the geometry at \((d_x,d_y,d_z)=(0,0,7.5) \text{ Å}\) (right).
At \((d_x, d_y, d_z) = (0,0,7.0) \text{ Å}\)

\[E_1 = -60.7 \text{ kcal/mol}, \]
\[E_2 = -60.0 \text{ kcal/mol} \]

Figure S36. Interaction energy \((E_1)\) as a function of the Cor-Cor distance \((d_z)\) for \((\text{H}_2\text{O})_6 \text{ (bag)}\) between a pair of sandwiched Cors (left) and the geometry at \((d_x,d_y,d_z) = (0,0,7.0) \text{ Å} \) (right).
At \((d_x, d_y, d_z) = (0, 0, 6.4) \text{ Å}\)

\[E_1 = -63.1 \text{ kcal/mol}, \]
\[E_2 = -62.0 \text{ kcal/mol} \]

Figure S37. Interaction energy \((E_1)\) as a function of the Cor-Cor distance \(d_z\) for \((\text{H}_2\text{O})_6\) (bag) between a pair of sandwiched Cors (left) and the geometry at \((d_x, d_y, d_z) = (0, 0, 6.4) \text{ Å}\) (right).
Figure S38. Geometry change of (H₂O)₆ (bag) as one Cor plane is laterally displaced from the other.

At \((d_x, d_y, d_z) = (0, 0, 6.4) \text{ Å}\)

\[E_1 = -63.1 \text{ kcal/mol} \]

At \((d_x, d_y, d_z) = (0.4, 0, 6.4) \text{ Å}\)

\[E_1 = -63.2 \text{ kcal/mol} \]
3-4. Cor/(H₂O)₆(cage)/Cor

At \((d_x, d_y, d_z) = (0,0,15) \, \text{Å}\)

\[
E_1 = -54.3 \, \text{kcal/mol}, \\
E_2 = -54.3 \, \text{kcal/mol}
\]

Figure S39. Interaction energy \((E_1)\) as a function of the Cor-Cor distance \((d_z)\) for \((H₂O)_₆\) (cage) between a pair of sandwiched Cors (left) and the geometry at \((d_x, d_y, d_z) = (0,0,15) \, \text{Å}\) (right).
At $(d_x, d_y, d_z) = (0,0,8.5) \text{Å}$

$E_1 = -59.3 \text{ kcal/mol}$,
$E_2 = -59.0 \text{ kcal/mol}$

Figure S40. Interaction energy (E_1) as a function of the Cor-Cor distance (d_z) for $(\text{H}_2\text{O})_6$ (cage) between a pair of sandwiched Cors (left) and the geometry at $(d_x, d_y, d_z) = (0,0,8.5) \text{Å}$ (right).
At \((d_x, d_y, d_z) = (0, 0, 7.5) \, \text{Å}\)

\[\begin{align*}
E_1 &= -57.6 \, \text{kcal/mol}, \\
E_2 &= -57.2 \, \text{kcal/mol}
\end{align*} \]

Figure S41. Interaction energy \((E_1)\) as a function of the Cor-Cor distance \((d_z)\) for \((\text{H}_2\text{O})_6\) (cage) between a pair of sandwiched Cors (left) and the geometry at \((d_x, d_y, d_z) = (0,0,7.5) \, \text{Å}\) (right).
At \((d_x, d_y, d_z) = (0, 0, 7.0)\) Å

\[
E_1 = -61.2 \text{ kcal/mol}, \\
E_2 = -60.5 \text{ kcal/mol}
\]

Figure S42. Interaction energy \((E_1)\) as a function of the Cor-Cor distance \((d_z)\) for \((\text{H}_2\text{O})_6\) (cage) between a pair of sandwiched Cors (left) and the geometry at \((d_x, d_y, d_z) = (0, 0, 7.0)\) Å (right).
At \((d_x, d_y, d_z) = (0, 0, 6.4)\) Å

\[
\begin{align*}
E_1 &= -62.2 \text{ kcal/mol}, \\
E_2 &= -61.1 \text{ kcal/mol}
\end{align*}
\]

Figure S43. Interaction energy \((E_1)\) as a function of the Cor-Cor distance \((d_z)\) for \((H_2O)_6\) (cage) between a pair of sandwiched Cors (left) and the geometry at \((d_x,d_y,d_z) = (0,0,6.4)\) Å (right).
3-5. Cor/(H$_2$O)$_6$ (prism)/Cor

At $(d_x, d_y, d_z) = (0,0,15)$ Å

$E_1 = -52.6$ kcal/mol,
$E_2 = -52.6$ kcal/mol

Figure S44. Interaction energy (E_1) as a function of the Cor-Cor distance (d_z) for (H$_2$O)$_6$ (prism) between a pair of sandwiched Cors (left) and the geometry at $(d_x,d_y,d_z) = (0,0,15)$ Å (right).
At $(d_x, d_y, d_z) = (0, 0, 9.0) \text{ Å}$

$E_1 = -52.4 \text{ kcal/mol}$,
$E_2 = -52.2 \text{ kcal/mol}$

Figure S45. Interaction energy (E_1) as a function of the Cor-Cor distance (d_z) for $(\text{H}_2\text{O})_6$ (prism) between a pair of sandwiched Cors (left) and the geometry at $(d_x, d_y, d_z) = (0, 0, 9.0) \text{ Å}$ (right).
At \((d_x, d_y, d_z) = (0, 0, 7.5) \text{Å}\)

\[
E_1 = -54.6 \text{ kcal/mol}, \\
E_2 = -54.1 \text{ kcal/mol}
\]

Figure S46. Interaction energy \((E_1)\) as a function of the Cor-Cor distance \((d_z)\) for \((\text{H}_2\text{O})_6\) (prism) between a pair of sandwichedCors (left) and the geometry at \((d_x, d_y, d_z) = (0, 0, 7.5) \text{Å}\) (right).
At $(d_x,d_y,d_z)= (0,0,6.5) \text{ Å}$

$E_1 = -64.9 \text{ kcal/mol}$,
$E_2 = -63.8 \text{ kcal/mol}$

Figure S47. Interaction energy (E_1) as a function of the Cor-Cor distance (d_z) for (H$_2$O)$_6$ (prism) between a pair of sandwiched Cors (left) and the geometry at $(d_x,d_y,d_z) = (0,0,6.5) \text{ Å}$ (right).
4. Many body Interaction of (H_2O)_{2-4} clusters extracted from substrates of this study

ΔE_w: Total interaction energy

E_{def}: deformation of energy of monomers, $E^{(2)}$: two-body interaction energy,

$E^{(3)}$: three-body interaction energy, $E^{(4)}$: four-body interaction energy.

All values are in kcal/mol

<table>
<thead>
<tr>
<th></th>
<th>water</th>
<th>substrate</th>
<th>ΔE_w</th>
<th>E_{def}</th>
<th>$E^{(2)}$</th>
<th>$E^{(3)}$</th>
<th>$E^{(4)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dimer</td>
<td>pristine</td>
<td>-5.05</td>
<td>0.09</td>
<td>-5.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cor</td>
<td>-4.16</td>
<td>0.12</td>
<td>-4.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBC</td>
<td>-4.89</td>
<td>0.17</td>
<td>-5.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>graphene</td>
<td>-5.02</td>
<td>0.14</td>
<td>-5.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Cor)_2</td>
<td>-4.76</td>
<td>0.22</td>
<td>-4.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(DBC)_2</td>
<td>-4.89</td>
<td>0.17</td>
<td>-5.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(graphene)_2</td>
<td>-4.84</td>
<td>0.14</td>
<td>-4.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trimer</td>
<td>pristine</td>
<td>-15.82</td>
<td>0.70</td>
<td>(-13.69)</td>
<td>-2.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cor</td>
<td>-15.40</td>
<td>0.81</td>
<td>-13.40</td>
<td>-2.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBC</td>
<td>-15.59</td>
<td>0.79</td>
<td>-13.55</td>
<td>-2.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>graphene</td>
<td>-15.61</td>
<td>0.79</td>
<td>-13.57</td>
<td>-2.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Cor)_2</td>
<td>-15.39</td>
<td>0.86</td>
<td>-13.45</td>
<td>-2.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(DBC)_2</td>
<td>-15.72</td>
<td>0.85</td>
<td>-13.68</td>
<td>-2.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(graphene)</td>
<td>-15.61</td>
<td>0.76</td>
<td>-13.58</td>
<td>-2.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tetramer</td>
<td>pristine</td>
<td>-27.42</td>
<td>1.51</td>
<td>(-22.52)</td>
<td>(-5.91)</td>
<td>-0.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cor</td>
<td>-27.25</td>
<td>1.59</td>
<td>-22.45</td>
<td>(-5.85)</td>
<td>-0.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBC</td>
<td>-27.22</td>
<td>1.53</td>
<td>-22.39</td>
<td>-5.83</td>
<td>-0.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>graphene</td>
<td>-27.34</td>
<td>1.58</td>
<td>-22.47</td>
<td>-5.70</td>
<td>-0.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Cor)_2</td>
<td>-27.20</td>
<td>1.72</td>
<td>-22.48</td>
<td>-5.88</td>
<td>-0.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(DBC)_2</td>
<td>-27.30</td>
<td>1.62</td>
<td>-22.49</td>
<td>-5.88</td>
<td>-0.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(graphene)_2</td>
<td>-27.24</td>
<td>1.64</td>
<td>-22.46</td>
<td>-5.81</td>
<td>-0.61</td>
<td></td>
</tr>
</tbody>
</table>

S52